항등식과 나머지 정리 문제 - hangdeungsiggwa nameoji jeongli munje

풀이를 2개로 나누어서 a, b, c 의 값을 구했습니다.

먼저 풀이 1를 봅시다.
문제의 주어진 식을 모두 전개하여 같은 동류항끼리 묶어 놓고,
왼쪽식과 오른쪽식을 비교하여 a, b, c의 값을 구했습니다.
이것을 계수비교법이라 합니다.

다음 풀이 2를 보겠습니다.
주어진 문제가 x에 대한 항등식이기 때문에, x값에 어떠한 식을 넣어도 성립합니다.
그래서 x의 값에 0, 1, 2 를 각각 대입하여 연립방정식을 이용해 a, b, c의 값을 구했습니다.
이것을 수치대입법이라 합니다.

다항식을 나누는 이유는 몫과 나머지를 구하기 위해서예요. 그런데, 몫은 필요 없고 나머지만 구하는 경우도 있겠죠? 이럴 때 나머지정리라는 걸 이용하면 편리하게 나머지를 구할 수 있어요.

인수정리라는 것도 있는데, 인수정리의 인수는 인수분해에서 사용했던 인수와 같은 말이에요. 그러니까 인수분해와 인수정리의 연관성을 생각해보는 것도 좋아요.

나머지정리와 인수정리는 한 끗 차이니까 잘 비교해서 이해하세요.

나머지정리

다항식의 나눗셈에서 다항식 A를 0 아닌 다항식 B로 나눌 때, 몫을 Q, 나머지를 R이라고 하면 A = BQ + R이라는 식으로 나타낼 수 있다고 했어요.

다항식의 나눗셈을 할 때, 세로로 바꿔서 숫자의 나눗셈을 할 때처럼 한다고 했죠? 그래서 몫과 나머지를 구했어요. 그런데 몫은 구하지 않고 나머지만 바로 구할 수 있을까요? 나머지정리를 이용해서 나머지만 구할 수 있는데, 어떻게 하는지 알아보죠.

x3 + 2x2 - 3x + 7을 x - 4로 나누었을 때 나머지를 구해보죠.

A = BQ + R이므로
x3 + 2x2 - 3x + 7 = (x - 4)Q + R로 쓸 수 있겠죠?

R만 구하는 방법은 두 가지에요.

  1. 우변의 (x - 4)Q를 이항해서 R = x3 + 2x2 - 3x + 7 - (x - 4)Q로 만들거나
  2. 우변의 (x - 4)Q = 0으로 만들어서 R = x3 + 2x2 - 3x + 7을 구하는 거죠.

두 번째 방법에서 (x - 4)Q를 0이 되게 만들 수 있어요. 어떻게요? x = 4를 대입하면 되잖아요.

항등식의 미정계수법 - 수치대입법을 생각해보세요. x에 특정한 값을 대입해서 식을 간단하게 만들었잖아요. x = 4를 대입해보죠.

43 + 2 × 42 - 3 × 4 + 7 = (4 - 4)Q + R
R = 64 + 32 - 12 + 7 = 91

직접 나눗셈을 해보지 않아도 나머지만 빠르게 구했어요.

위에서는 A라는 식을 사용했는데요, 보통은 x에 관한 식을 사용하니까 나눠지는 식을 f(x)라고 하고, 몫은 Q(x)라고 해요. f(x)를 x - 4로 나눌 때의 나머지는 x = 4를 대입했을 때의 값이죠? 이건 f(4)라고 표현할 수 있잖아요.

f(x)를 (x - 4)로 나눌 때의 나머지 = f(4)

이번에는 같은 식을 2x - 1로 나누었을 때의 나머지를 구해보죠. 식을 써보면 아래처럼 될 거예요.

f(x) = x3 + 2x2 - 3x + 7 = (2x - 1)Q(x) + R

마찬가지로 수치대입법을 이용해서 x = 

항등식과 나머지 정리 문제 - hangdeungsiggwa nameoji jeongli munje
을 대입하면 (2x - 1)Q(x) = 0이 되어서 우변은 R만 남죠.

항등식과 나머지 정리 문제 - hangdeungsiggwa nameoji jeongli munje

두 보기에서 확인할 수 있듯이 f(x)를 일차식으로 나눌 때의 나머지 R은 (나누는 일차식) = 0이 되는 x를 f(x)에 대입한 값과 같아요.

나머지정리
x에 대한 다항식 f(x)를 일차식 (x - α)로 나누었을 때 나머지 R = f(α)
x에 대한 다항식 f(x)를 일차식 (ax + b)로 나누었을 때의 나머지 R =

항등식과 나머지 정리 문제 - hangdeungsiggwa nameoji jeongli munje

다항식 f(x)를 (x - 1)로 나눈 나머지는 1, (x - 2)로 나눈 나머지는 3일 때, f(x)를 (x - 1)(x - 2)로 나눈 나머지를 구하여라.

문제를 식으로 나타내 보죠.
f(x)를 (x - 1)로 나눈 나머지가 1 → f(1) = 1
f(x)를 (x - 2)로 나눈 나머지가 3 → f(2) = 3
f(x)를 (x - 1)(x - 2)로 나누기 → f(x) = (x - 1)(x - 2)Q(x) + R(x)

여기서 중요한 건 나머지는 나누는 식보다 차수가 작다는 거예요. 나누는 식이 (x - 1)(x - 2)로 이차식이니까 R은 상수항일 수도 있지만, x에 관한 일차식일 수도 있어요. x에 관한 일차식이니까 R(x) = ax + b라고 나타내야 합니다.

f(x) = (x - 1)(x - 2)Q(x) + ax + b

f(1) = (1 - 1)(1 - 2)Q(1) + a + b = 1
a + b = 1

f(2) = (2 - 1)(2 - 2)Q(2) + 2a + b = 3
2a + b = 3

a + b = 1, 2a + b = 3을 연립방정식으로 풀면 a = 2, b = -1이 되므로 R(x) = ax + b = 2x - 1이에요.

나머지정리는 나누는 식이 일차식일 때뿐 아니라 그보다 더 높은 차수의 식일 때도 사용할 수 있다는 걸 알 수 있죠? 또, 나누는 식 = 0이 되는 x의 개수가 더 많아지는 것도 확인할 수 있어요.

나누는 식이 일차식이면 R은 상수
나누는 식이 이차식이면 R(x) = ax + b
나누는 식이 삼차식이면 R(x) = ax2 + bx + c

인수정리

다항식의 나눗셈에서 다항식 A를 0이 아닌 다항식 B로 나누었을 때 나머지 R = 0이면 나누어떨어진다고 했어요. R = 0이니까 f(x)로 바꿔서 표현하면 f(x) = (x - α)Q(x)가 되겠죠?

나머지정리에 의해서 f(x)에 x = α를 대입하면 f(α) = 0이 돼요.

f(x) = (x - α)Q(x)에서 f(x)는 (x - α)와 Q(x)라는 두 다항식의 곱으로 되어있어요. 이렇게 어떤 다항식이 두 개 이상의 다항식의 곱으로 표시하는 걸 인수분해라고 했어요. 곱해져 있는 다항식을 인수라고 하죠? 따라서 (x - α)와 Q(x)는 f(x)의 인수에요.